Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene.

نویسندگان

  • M A Honma
  • F M Ausubel
چکیده

We have identified two Rhizobium meliloti genes (nodD2 and nodD3) that are highly homologous and closely linked to the regulatory gene nodD (nodD1). R. meliloti strains containing mutations in the three nodD genes in all possible combinations were constructed and their nodulation phenotypes were assayed on Medicago sativa (alfalfa) and Melilotus alba (sweet clover). A triple nodD1-nodD2-nodD3 mutant exhibited a Nod- phenotype on alfalfa and sweet clover, indicating that nodD is an essential nodulation gene in R. meliloti. A nodD2 mutant exhibited no discernable defect in nodulation and nodD3 mutants exhibited a delayed nodulation phenotype of 2-3 days when inoculated onto either host. Alfalfa nodules elicited by a nodD1 mutant appeared 5-6 days after wild-type nodules, and sweet clover nodules elicited by a nodD1 mutant appeared 2-3 days after wild-type nodules. nodD1-nodD2 double mutants formed nodules with the same delay as single nodD1 mutants on both hosts. nodD2-nodD3 double mutants elicited sweet clover nodules at the same rate as single nodD3 mutants, but this same double mutant was slightly more delayed in alfalfa nodule formation than the nodD3 mutant. The nodD1-nodD3 mutant exhibited an extremely delayed nodulation phenotype on alfalfa and elicited no nodules on sweet clover. These experiments indicate that nodD1 and nodD3 have equivalent roles in nodulating sweet clover but that nodD1 plays a more important role than nodD3 in eliciting nodules on alfalfa. The nodD2 gene appears to have some effect on alfalfa nodulation and none on sweet clover. Our results indicate that R. meliloti has three functional nodD genes that modulate the nodulation process in a host-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of syrM and nodD3 in Rhizobium meliloti.

The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is...

متن کامل

Rhizobium meliloti nodD genes mediate host-specific activation of nodABC.

To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hos...

متن کامل

Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes.

Nodulation (nod) genes in Rhizobium meliloti are transcriptionally induced by flavonoid signal molecules, such as luteolin, produced by its symbiotic host plant, alfalfa. This induction depends on expression of nodD. Upstream of three inducible nod gene clusters, nodABC, nodFE, and nodH, is a highly conserved sequence referred to as a 'nod box.' The upstream sequences have no other obvious simi...

متن کامل

Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK genes in Escherichia coli.

When present in Escherichia coli on the multicopy expression vector pUC19, a Rhizobium meliloti regulatory gene, fixJ, belonging to a two-component regulatory system, activated the expression of two R. meliloti symbiotic genes, nifA and fixK. Primer extension by reverse transcription showed that FixJ stimulates nifA expression in E. coli by activating pnifA.

متن کامل

Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes.

Luteolin is a phenolic compound from plants that acts as a potent and specific inducer of nodABC gene expression in Rhizobium meliloti. We have found that R. meliloti RCR2011 exhibits positive chemotaxis towards luteolin. A maximum chemotactic response was observed at 10(-8) M. Two closely related flavonoids, naringenin and apigenin, were not chemoattractants. The presence of naringenin but not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 84 23  شماره 

صفحات  -

تاریخ انتشار 1987